

Never Compromise Safety or Efficacy

86%

WOCN reported on average **4+ departments** are involved in wound treatment¹

WOCNs reported an average of **4+ prescribers** are involved in wound treatment plan¹

Almost ¹/₂ of WOCNs have **4+ cleansers** to choose from for wound treatment¹

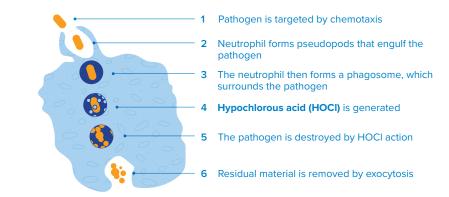
Evolving Practice means Never Compromise

Wound bed preparation and cleansing technologies have significantly evolved in the last decade. Newer products now take into consideration the need for a cleanser that can disrupt microbial colonies while maintaining the integrity of key wound healing cells.

As a result, expert guidelines now include evidence-based recommendations that can lead to improved outcomes and cost savings without compromising safety and effectiveness.

Following evidence-based consensus guidelines

Limited evidence exists on the ability of saline to address high levels of microbes or bacteria present in chronic wounds, while other antimicrobial preservatives present in cleansers could compromise wound healing. Using a cleanser that can remove or disrupt microbial colonies is a critical component to wound healing.^{2,3}


The ideal cleansing solution should balance the need for removal of microbial colonies while avoiding damage to key wound healing cells. Cytotoxicity to these key cells; fibroblasts, keratinocytes, vascular and endothelial cells should be considered as they are required to heal the wound.²⁻⁵

Traditional cleansers such as hydrogen peroxide, traditional sodium hypochlorite (e.g. Dakin's solution), povidoneiodine and chlorhexidine are proven to be cytotoxic to necessary healing cells, which leads to "hard-to-heal" wounds burdening healthcare. A wound cleanser for frequent use should both disrupt and remove germs/microbes and preserve wound cells to promote a healthy wound environment.²⁻⁵

Replicating the body's natural response to invading pathogens:

After a pathogen enters the body, neutrophils are quickly deployed from the bloodstream to respond. Through a complex biochemical pathway, Pure hypochlorous acid (pHA) is produced naturally by the human body to neutralize invading pathogens.

Proven efficacy

A recent prevalence study confirmed that almost 80% of chronic wounds contain high levels of microbes.⁶⁷ Those microbes are thought to be the root cause of "80% of all infections in humans and responsible for potentially delaying healing in 60% of chronic wounds.^{8,9}

Pure hypochlorous acid (pHA) has the ability to disrupt microbial colonies after short exposure¹⁰

No known clinically relevant resistance to pHA, non-mutagenic properties unlike other solutions (antimicrobials and antibiotics)

80-100 times more effective than sodium hypochlorite^{11,12}

Effective as a preservative against fungi, spores, viruses and multi-drug resistant bacteria

When a pHA-preserved wound cleanser is used in clinical studies, significant quantities of pathogens are mechanically removed from wounds, allowing the immune system to sustain the reductions.¹³⁻¹⁵

Organism	Time to kill	% Reduction
MRSA	15 seconds	99.999%
VRE	15 seconds	99.999%
Escherichia coli	15 seconds	99.999%
Acinetobacter baumannii	15 seconds	99.999%
Bacteroides fragilis	15 seconds	99.999%
Candida albicans	15 seconds	99.999%
Enterobacter aerogenes	15 seconds	99.999%
Enterococcus faecium	15 seconds	99.999%
Haemophilus influenzae	15 seconds	99.999%
Klebsiella oxytoca	15 seconds	99.999%
Klebsiella pneumoniae	15 seconds	99.999%

Organism	Time to kill	% Reduction
Micrococcus luteus	15 seconds	99.999%
Proteus mirabilis	15 seconds	99.999%
Pseudomonas aeruginosa	15 seconds	99.999%
Serratia marcescens	15 seconds	99.999%
Staphylococcus epidermidis	15 seconds	99.999%
Staphylococcus haemolyticus	15 seconds	99.999%
Staphylococcus hominis	15 seconds	99.999%
Staphylococcus saprophyticus	15 seconds	99.999%
Streptococcus pyogenes	15 seconds	99.999%
Staphylococcus aureus	15 seconds	99.995%
C. difficile endospores	15 seconds	99.93%

Proven safety

Based on years of clinical experience, evidence and extensive testing, Vashe helps to accomplish the goals of wound bed preparation and has proven to be:

Safe for key cells

Safe around mucous membranes

Has no known contraindications

Animal Model	Results	
Eye Irritation (Rabbit)	No ocular irritation	
Skin Sensitization (Guinea Pig)	No skin sensitization, no delayed- contact hypersensitivity	
Primary Dermal Irritation (Rabbit)	No dermal irritation, no erythema or edema	
Acute Oral Toxicity (Rat)	No oral toxicity (LD50>5g/kg)	
Cell-Based Assay		
Bacterial Mutagenicity	Non-mutagenic	
Cytotoxicity	Biocompatible with fibroblasts and keratinocytes	

Safe for key cells

Wound Irrigant	Results	% Cell Survival (Fibroblasts & Keratinocytes)
Hypochlorous Acid (@ $\underline{4x}$ the normal % of Vashe Wound Solution)	Pass	> 75 %
Saline (0.9% NaCl, pH 5.0)	Pass	> 75%
Dakin's Solution (0.25%)	Fail	< 25%
Dakin's Solution (0.5%)	Fail	< 25%
Chlorhexidine gluconate (4%)	Fail	< 25%
Hydrogen peroxide (3%)	Fail	< 25%
Povidone iodine (7.5%)	Fail	< 25%
Povidone iodine (10%)	Fail	< 25%

Hypochlorous acid (at four times the normal percent of Vashe) is non-cytotoxic (grade 0), in contrast to other commonly used cleansers with significant cytotoxic effects¹⁶

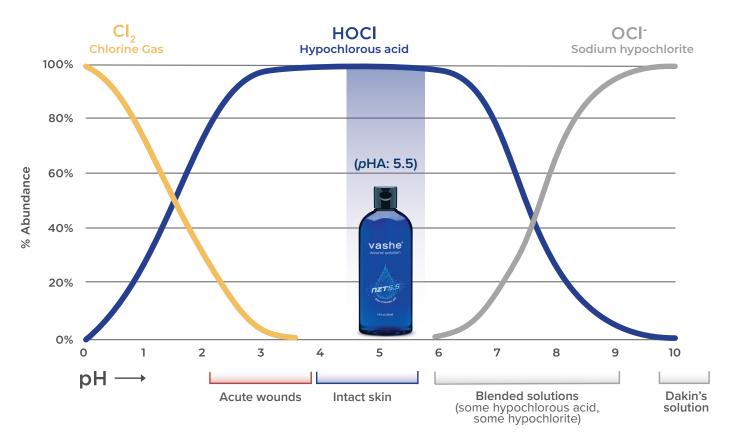
A study was conducted in an outpatient wound center where Vashe was used for general cleansing on 31 patients. This study found that:

- 86% of chronic wounds healed
- Pain was reduced from 4.7 visual analog scale (VAS) to 0 at the end of the evaluation
- Odor was reduced from 4.58 VAS to 0 at the end of the evaluation¹⁷

Addressing Patient Comfort

The importance of pH

Wound healing is optimal in slightly acidic environments where antimicrobial properties are higher. *Pure* hypochlorous acid has a pH between 3.5 and 5.5, which is favorable to wound healing environments that can aid in:¹⁸


- Optimal protease activity and oxygen release¹⁹
- Reduced toxicity of bacterial end products²⁰
- Epithelization and angiogenesis^{21,22}
- Increased macrophage and fibroblast activity^{21,23,24}

vashe

wound solution

Many cleansing solutions contain toxic ingredients, such as sodium hypochlorite, and have a highly alkaline pH. An alkaline environment can allow pathogens to thrive and potentially impede the healing process.²⁵

Chlorine, Hypochlorous Acid, and Sodium Hypochlorite Abundance Based on pH + Relative pH of Wound Types and Various Solutions Used

A unique wound solution manufactured at a pH of 5.5

Vashe in clinical practice

The effectiveness and versatility of a *p*HA-based cleanser allows for streamlining and standardization. Vashe can be delivered through cleansing, packing, soaking, adjunctive debridement modalities (such as enzymatic and ultrasonic debridement), and in conjunction with Negative Pressure Wound Therapy with instillation and dwell (NPWT-id) for a variety of skin/wound conditions.

Venous Leg Ulcers

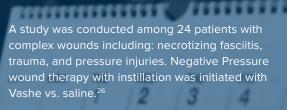
Pressure injuries (Stage I-IV)

Post-surgical wounds

Diabetic Foot Ulcer

Pediatrics

Trauma


Unmatched Support

With so many potential variables, consistent wound cleansing seems impossible. When asked, almost **half** of clinicians said evidence-based practice is only attainable with continuous education and compelling evidence.¹

Economic Benefits

Conclusions:

7 Day reduction in healing time \$141,280 Cost savings per patient Another study was conducted consisting of 17 adult patients with complex wounds, of multiple etiologies. Patients were randomly assigned to receive either Vashe or saline irrigation during low frequency ultrasonic debridement.²⁷

Conclusions:

55%

Less complications

\$3K-\$33K Cost savings per complication

Vashe ordering information

Bottle Size/ Pack Size	Pour-Top Bottle Catalog Code	Instillation Bottle Catalog Code
4.0 fl. oz. (118 ml) Bottles/24-Pack	00312	Not available
8.5 fl. oz. (250 ml) Bottles/12-Pack	00313	00316
16.0 fl. oz. (475 ml) Bottles/12-Pack	00314	00317
34.0 fl. oz. (1 liter) Bottles/6-Pack	00322	00323

Vashe is also available over the counter! Visit vasheotc.com to learn more and order.

References: 1. Urgo data on file. 2. Murphy C, Atkin L, Swanson T, Tachi M, Tan YK, Vega de Ceniga M, Weir D, Wolcott R. International consensus document. Defying hard-to-heal wounds with an early antibiofilm intervention strategy: wound hygiene. J Wound Care 2020; 29(Suppl 3b):S1–28. 3. European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline. Emily Haesler (Ed.). EPUAP/NPIAP/PPPIA: 2019. 4. Eriksson, E, Liu, PY, Schultz, GS, et al. Chronic wounds: Treatment consensus. Wound Rep Reg. 2022; 30(2): 156-171. doi:10.1111/wrr.12994 5. International Wound Infection Institute (IWII) Wound Infection in Clinical Practice, Wounds International, 2022. 6, Malone M., Biarnsholt T., McBain A.J., James G.A., Stoodley P., Leaper D., Tachi M., Schultz G., Swanson T., Wolcott R.D. The prevalence of biofilms in chronic wounds A systematic review and meta-analysis of published data. J. Wound Care. 2017;26:20–25. doi: 10.12968/jowc.2017.26.1.20 7. Mendoza R.A., Hsieh J.-C., Galiano R.D. Wound Healing–Current Perspectives. Ltech-Open; London, UK: 2019. The Impact of Biofilm Formation on Wound Healing. 8. Percival SL, Vuotto C, Donelli G, Lipsky BA. Biofilms and wounds: an identification algorithm and potential treatment options. Adv Wound Care (New Rochelle). 2015;4(7):389-397. 9. James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37-44. doi: 10.1111/j.1524-475X.2007.00321.x. 10. Robson MC. Treating chronic wounds with hypochlorous acid disrupts biofilm. Today's Wound Clinic. 2014;8(9. 11. Block SS. Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37-44. doi: 10.1111/j.1524-47.5X.2007.003/21X. **10**. Robson MC. Treating chronic wounds with hypochlorous acid disrupts biofiling Today Swoment of the inorganic armamentarium of innate immunity. J Burns Konson MC. Treating chronic wounds with hypochlorous acid disrupts biofilized hypochlorous acid: A companic of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007;665-79. **13**. Vashe Wound Solution data developed from USP 51 Antimicrobial testing. **14**. Bohn GA, Champion S, Eldridge K. Can the use of hypochlorous acid: A companic armamentarium of innate immunity. J Burns Wound Care; 2013; Orlando, FL. **15**. Nerandzic MM, Rackaityte E, Jury LA, et al. Novel Strategies for Enhanced Removal of Persistent Bacillusanthracis Surgates and Closeful or gate is a motion of Vashe Wound Therapy in the companic armamentarium of Jastier M, Backaityte E, Jury LA, et al. Novel Strategies for Enhanced Removal of Persistent Bacillusanthracis Surgates and Closeful or gate is a spectral to a spectral testing. **14**. Bohn GA, Champion S, Eldridge K. Can the use of hypochlorous acid: A company of participation of Vashe Wound Care; 2013; Orlando, FL. **15**. Nerandzic MM, Rackaityte E, Jury LA, et al. Novel Strategies for Enhanced Removal of Persistent Bacillusanthracis Surgates and Closeful or patients with chronic wounds. Adv Skin Wound Care; 2019;352-357. **18**. Nagoba BS, Suryawanshi NM, Wadher B, et al. Acidic environment and would healing: A review. Wounds. 2015;27(1):5-11. **19**. Vermeulen H, van Hattem JM, Storm-Versloot MM, et al. Topical silver for treating infected wounds. Cochrane Database Syste Rev. 2007;21(1):CD005486. **20**. Gethin G. The significance of surface PH in chronic wounds. Wounds WC. 2007;33(1):5-56. **21**. Hunt YL, Hopf HW. Wound healing: A review. Wounds. Subgraves and Closefue AG. **20**. Gethin G. The significance of Surface PH in chronic wounds. Subgraves and Closefue AG. 2006;37(5):681-6822. Subgraves and Surface AG. 20 23. Thomas S. Wound Management and Dressings. London, UK: Pharmaceutical Press; 1990. 24. Molan PC. Re-introducing honey in the management of wounds and ulcers-theory and practice. Ostomy Wound Manage. 2002;48(11):28-40. 25. Ortega-Peña, Silvestre & Hidalgo-González, Christian & Robson, Martin & Krötzsch, Edgar. (2016). In vitro microbicidal, anti-biofilm and cytotxic effects of different commercial antiseptics: Antibiofilm effects of different commercial antiseptics: Antibiofilm effects of different commercial antiseptics: Antibiofilm effects of environmencial antiseptics: Antibiofilm affects of use of the second of the se Acid Preserved Wound Cleanser versus Saline Irrigation in Conjunction with Ultrasonic Debridement for Complex Wounds. JHEOR. 2021;8(2):76-81. doi:10.36469/001c.28429

Manufactured by: URGO Medical North America, LLC. Fort Worth, TX 76102 To order, call 1-855-888-8273 or visit www.urgomedical.us To order in Canada, call 1-888-446-4143

© 2023 Urgo Medical North America, LLC. All rights reserved. Vashe, Urgo, and the Urgo logo are registered trademarks of Urgo Medical.